Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.077
Filter
1.
São Paulo; s.n; 20240103. 91 p.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1524343

ABSTRACT

Esta tese foi dividida em três partes, sendo que cada uma consistiu estudo independente, com objetivos próprios. Na parte 1, o objetivo foi avaliar a influência do modo de representar a interface osso-OMI (osseointegrada ou não osseointegrada) sobre a previsão do risco de reabsorção óssea peri-implantar. Foram construídos quatro modelos tridimensionais que representaram o OMI inserido em quatro cilindros de osso de densidades crescentes, diferenciados pela espessura do osso cortical (Ct = 0,5; 1,2; 2,0 e 3,0 mm) e pelo módulo de elasticidade do osso trabecular (TE = 0,2; 1,4; 3,0 e 5,5 GPa). Para cada modelo, foram simuladas duas condições de interface osso-OMI: uma que considerava união perfeita entre osso e OMI (osseointegrado) e outra que considerava a possibilidade de movimentos relativos entre eles (não osseointegrado). Uma força horizontal de 2 N foi aplicada na cabeça do OMI, para simular a retração de dentes anteriores. A avaliação do risco de reabsorção óssea peri-implantar foi baseada no critério de falha da deformação principal maior, assumindo um valor crítico de 3.000 strain, tanto para tração quanto para compressão. Os resultados mostraram que, ao simular a interface osso-OMI como perfeitamente unida, o risco de perda de estabilidade do OMI por reabsorção óssea peri-implantar no osso menos denso fica subestimado. Na parte 2, foram novamente representadas as quatro condições de qualidade óssea, mas com modelos que representavam o contorno anatômico dos ossos correspondentes: maxila pouco densa, maxila controle, mandíbula controle e mandíbula muito densa. A AEF foi conduzida para tentar explicar por que os OMIs colocados na maxila apresentam maior taxa de sucesso em relação aos OMI colocados na mandíbula, apesar da melhor qualidade do osso mandibular. Além da força horizontal de 2 N (cenário clínico), foi simulada uma força horizontal de 10 N (condição de sobrecarga) e a interface osso OMI foi simulada como não-osseointegrada em todos os modelos. A avaliação do risco de reabsorção óssea peri-implantar seguiu o mesmo critério da parte 1 e foi também avaliado o risco de falta de estabilidade imediata, baseado no deslocamento intra-ósseo do OMI. Em todos os casos, o pico de deslocamento do OMI ficou muito abaixo do limiar de 50-100 m, o que sugere que a estabilidade primária seria suficiente mesmo no cenário de maxila de baixa densidade sobrecarregada. De acordo com os dados da deformação principal maior, a maxila está mais sujeita a perder sua estabilidade inicial devido à sobrecarga ortodôntica, especialmente na condição de baixa densidade, em que tanto a deformação de tração quanto a de compressão ultrapassaram o limiar de reabsorção óssea patológica. É provável que essa AEF não conseguiu prever o maior risco de falha de OMI em mandíbula de alta densidade porque não simulou as tensões residuais geradas pela inserção do OMI. Portanto, a simulação da inserção do OMI parece essencial para explicar a contradição que motivou esse estudo. Na parte 3, o objetivo foi comparar, através da AEF, o risco de reabsorção radicular inflamatória induzida ortodonticamente (RRIIO) entre duas mecânicas ortodônticas de intrusão (convencional e com mini-implantes), em situações de diferentes níveis de suporte periodontal. Foram construídos quatro modelos de um pré-molar superior inserido na maxila: controle (CTL) e 2, 4 ou 6 mm de perda óssea horizontal (R2, R4 e R6, respectivamente). Uma força de intrusão de 25 cN foi utilizada para as duas mecânicas em estudo. Nos modelos com mini-implante ortodôntico, a força foi dividida entre as faces vestibular e palatina. Nos modelos sem mini-implantes, a força foi aplicada apenas na vestibular. O índice de risco de reabsorção radicular (iRRR) foi calculado dividindo o pico de tensão hidrostática compressiva no ligamento periodontal pela tensão hidrostática dos capilares (4,7 kPa). A mecânica com mini-implante, além de apresentar iRRR sempre menores (CTL 1,2 e 1,4; R2: 1,4 e 1,7; R4: 1,7 e 2,2; R6: 2,4 e 3,2 - para mecânicas com e sem OMI, respectivamente), gerou apenas uma região com tensão hidrostática acima do valor crítico, próxima ao ápice do dente, para todos os modelos. Na mecânica convencional, houve também uma região com tensão hidrostática compressiva acima de 4,7 kPa na região cervical vestibular do modelo com 6 mm de perda óssea horizontal. O uso de mini-implante na intrusão ortodôntica diminuiu o risco de RRIIO em todos os casos simulados e o risco de reabsorção óssea adicional no modelo em que o dente apresentava uma perda óssea horizontal prévia de 6 mm.


Subject(s)
Bone Resorption , Finite Element Analysis
2.
Braz. dent. sci ; 27(2): 1-12, 2024. ilus, tab
Article in Portuguese | LILACS, BBO | ID: biblio-1551332

ABSTRACT

Objective: In response to the demand for dental implants, extensive research has been conducted on methods for transferring load to the surrounding bone. This study aimed to evaluate the stresses on the peripheral bone, implants, and prostheses under scenarios involving of the following variables: prosthesis designs, vertical bone heights, load angles, and restorative materials. Material and Methods: Three implants were inserted in the premolar and molar regions (5-6-7) of the two mandibular models. Model 1 represented 0 mm marginal bone loss and Model 2 simulated 3 mm bone loss. CAD/CAM-supported materials, hybrid ceramic (HC), resin-nano ceramic (RNC), lithium disilicate (LiSi), zirconia (Zr), and two prosthesis designs (splinted and non-splinted) were used for the implant-supported crowns. Forces were applied vertically (90°) to the central fossa and buccal cusps and obliquely (30°) to the buccal cusps only. The stresses were evaluated using a three-dimensional Finite Element Analysis. Results: Oblique loading resulted in the highest stress values. Of the four materials, RNC showed the low stress in the restoration, particularly in the marginal area. The use of different restorative materials did not affect stress distribution in the surrounding bone. The splinted prostheses generated lower stress magnitude on the bone, and while more stress on the implants were observed. Conclusion: In terms of the stress distribution on the peri-implant bone and implants, the use of different restorative materials is not important. Oblique loading resulted in higher stress values, and the splinted prosthesis design resulted in lower stress (AU)


Objetivo: Em resposta à demanda por implantes dentários, extensa pesquisa foi realizada sobre métodos para transferir carga ao osso circundante. Este estudo buscou avaliar os estresses no osso periférico, implantes e próteses em cenários que envolvem as seguintes variáveis: designs de próteses, alturas ósseas verticais, ângulos de carga e materiais restauradores. Material e Métodos: Três implantes foram inseridos nas regiões dos pré-molares e molares (5-6-7) de dois modelos de mandíbula. O Modelo 1 representou perda óssea marginal de 0 mm e o Modelo 2 simulou perda óssea de 3 mm. Materiais suportados por CAD/CAM, cerâmica híbrida (HC), cerâmica nano-resina (RNC), dissilicato de lítio (LiSi), zircônia (Zr) e dois designs de próteses (sintetizadas e não-sintetizadas) foram utilizados para as coroas suportadas por implantes. Forças foram aplicadas verticalmente (90°) à fossa central e cúspides bucais e obliquamente (30°) apenas às cúspides bucais. Os estresses foram avaliados usando Análise de Elementos Finitos tridimensional. Resultados: Cargas oblíquas resultaram nos valores mais altos de estresse. Entre os quatro materiais, RNC mostrou baixo estresse na restauração, especialmente na área marginal. O uso de diferentes materiais restauradores não afetou a distribuição de estresse no osso circundante. Próteses sintetizadas geraram menor magnitude de estresse no osso, enquanto mais estresse nos implantes foi observado. Conclusão: Em termos de distribuição de estresse no osso peri-implantar e implantes, o uso de diferentes materiais restauradores não é crucial. Cargas oblíquas resultaram em valores mais altos de estresse, e o design de prótese sintetizada resultou em menor estresse. (AU)


Subject(s)
Dental Implants , Dental Prosthesis , Finite Element Analysis , Biomechanical Phenomena
3.
São José dos Campos; s.n; 2024. 81 p. ilus, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1552084

ABSTRACT

O objetivo deste estudo foi avaliar o comportamento biomecânico através da resistência à fadiga e análise por elementos finitos de coroas bioinspiradas bilaminadas com infraestruturas modificadas na superfície vestibular (Estudo A) e utilizando diferentes materiais cerâmicos com módulos elásticos distintos (Estudo B). Para isso, foram confeccionados 90 preparos para coroa total em resina epóxi G10, sobre os quais foram preparadas coroas bioinspiradas de acordo com os seguintes grupos: Estudo A - IC (infraestrutura convencional), IME (infraestrutura modificada estratificada) e IMC (infraestrutura modificada cimentada), todas confeccionadas em dissilicato de lítio (infraestrutura) + porcelana (recobrimento); Estudo B ­ DL+LEU (dissilicato de lítio + leucita), LEU+DL (leucita + dissilicato de lítio), CH+DL (cerâmica híbrida + dissilicato de lítio) e CH+LEU (cerâmica híbrida + leucita). Para o Estudo A, todas as infraestruturas foram usinadas; os recobrimentos dos grupos IC e IME foram confeccionados através da estratificação, e os recobrimentos do grupo IMC foram usinados. Já para o Estudo B, todas as peças foram usinadas, de acordo com o material cerâmico de cada grupo. Em seguida, foi realizada a cimentação adesiva dos recobrimentos sobre as infraestruturas (a depender do grupo) e das coroas sobre os preparos utilizando cimento resinoso fotopolimerizável (Variolink Esthetic LC). Após a cimentação, os espécimes foram submetidos ao teste de fadiga cíclica (10.000 ciclos, 20Hz), e como desfecho foram considerados dois eventos, em que o primeiro foi a ocorrência de trinca e/ou lascamento (evento 1) e o segundo foi a falha catastrófica do conjunto (evento 2). Os valores de carga e número de ciclos para falha em que foram observados os eventos 1 e 2 foram utilizados para realizar a análise de sobrevivência de acordo com Kaplan-Meier e Log-Rank (Mantel-Cox; 95%). As marcas de fratura e o modo de falha das coroas foram avaliados e classificados por estereomicroscópio óptico e microscópio eletrônico de varredura. Por fim, foi realizada análise por elementos finitos (FEA) para ambos os estudos, a fim de avaliar a distribuição de tensões sobre as coroas e interface adesiva. Para o Estudo A, os resultados do teste de fadiga mostraram que, considerando o evento 1 (trinca/lascamento), os grupos IC e IMC apresentaram médias de carga fadiga estatisticamente significantes entre si (733,33 N e 913,33 N, respectivamente), enquanto o grupo IME apresentou média superior (1.020 N). O mesmo foi observado para o número de ciclos em fadiga para todos os grupos. Ao considerar o evento 2 (falha catastrófica), os três grupos apresentaram médias estatisticamente semelhantes entre si (~1.028 N). Os resultados de FEA mostraram que o grupo IC concentrou maior tensão de tração do que os grupos IME e IMC. Para o Estudo B, no teste de fadiga, o grupo DL+LEU apresentou a maior média de resistência à fadiga (evento 1: 913,33 N e evento 2: 1033,33 N), enquanto todas as outras combinações de materiais cerâmicos analisadas foram estatisticamente semelhantes entre si, considerando carga e número de ciclos. Com relação ao FEA, os grupos com cerâmica híbrida (CH+DL e CH+LEU) apresentaram menores picos de concentração de tensão na infraestrutura do que os grupos com cerâmicas vítreas (DL+LEU e LEU+DL), porém, em contrapartida, concentraram maior tensão na interface adesiva. Com isso, conclui-se que a utilização da infraestrutura modificada é uma alternativa viável e promissora para tratamentos reabilitadores, apresentando sobrevivência em fadiga e distribuição de tensões satisfatórias. Além disso, a combinação entre uma infraestrutura de dissilicato de lítio e recobrimento de cerâmica a base de leucita corresponde a melhor abordagem considerando a infraestrutura modificada.(AU)


The objective of this study was to evaluate the biomechanical behavior through fatigue resistance and finite element analysis of bilaminar bioinspired crowns with modified infrastructures on the buccal surface (Study A) and using different ceramic materials with different elastic moduli (Study B). For this, 90 preparations were made for a full crown in G10 epoxy resin, on which bioinspired crowns were prepared according to the following groups: Study A - CI (conventional infrastructure), SMI (stratified modified infrastructure) and CMI (cemented modified infrastructure ), all made of lithium disilicate (infrastructure) + porcelain (veneer); Study B ­ LD+LEU (lithium disilicate + leucite), LEU+LD (leucite + lithium disilicate), HC+LD (hybrid ceramic + lithium disilicate) and HC+LEU (hybrid ceramic + leucite). For Study A, all infrastructures were machined; the coverings of the CI and SMI groups were made through stratification technique, and the veneers of the SMI group were machined. For Study B, all pieces were machined, according to the ceramic material of each group. Then, the veneers were cemented into their infrastructures (depending on the group) and crowns were cemented into preparations using light-cured resin cement (Variolink Esthetic LC). After cementing, the specimens were subjected to the cyclic fatigue test (10,000 cycles, 20Hz), and as an outcome two events were considered: the occurrence of cracking and/or chipping (event 1) and catastrophic failure (event 2). The load (N) and number of cycles to failure in which events 1 and 2 were observed were used to perform the survival analysis according to Kaplan-Meier and Log-Rank (Mantel- Cox; 95%). The fracture marks and failure mode of the crowns were evaluated and classified by optical stereomicroscope and scanning electron microscope. Finally, finite element analysis (FEA) was performed for both studies in order to evaluate the stress distribution over the crowns and adhesive interface. For Study A, the results of the fatigue test showed that, considering event 1 (cracking/chipping), the CI and CMI groups presented average to failure that were statistically significant compared to each other (733.33 N and 913.33 N, respectively), while the SMI group showed higher averages (1,020 N). Same pattern was observed for the number of cycles under fatigue for both groups. When considering event 2 (catastrophic failure), the three groups presented statistically similar means (~1,028 N). The FEA results showed that the CI group concentrated greater tensile stress than the CMI and SMI groups. For Study B, in the fatigue test, the LC+LEU group presented the highest average fatigue resistance (event 1: 913.33 N and event 2: 1033.33 N), while all other combinations of ceramic materials analyzed were statistically similar to each other, considering load and number of cycles. Regarding FEA, the groups with hybrid ceramics (HC+LC and HC+LEU) showed lower stress concentration peaks in the infrastructure than the groups with glass ceramics (LC+LEU and LEU+LC), however, on the other hand, concentrated greater tension at the adhesive interface. With this, it is concluded that the use of modified infrastructure is a viable and promising alternative for oral rehabilitation treatments, presenting satisfactory fatigue survival and adequate stress distribution. Furthermore, the combination of a lithium disilicate infrastructure and a leucite-based ceramic coating corresponds to the best approach considering the modified infrastructure.(AU)


Subject(s)
Ceramics , Finite Element Analysis , Biomimetics , Denture, Partial, Fixed , Fatigue
4.
Rev. cir. traumatol. buco-maxilo-fac ; 23(2): 17-25, abr./jun 2023. ilus
Article in Portuguese | LILACS, BBO | ID: biblio-1537357

ABSTRACT

Introdução: A osteotomia Le Fort I possibilita a correção de deformidades dentofaciais que envolvem o terço médio da face. Para sua fixação, convencionou-se o emprego de quatro mini-placas nos pilares zigomático-maxilar e nasomaxilar. Propôs-se então, a dispensa da fixação do segmento posterior, surgindo questionamentos relacionados à capacidade biomecânica do sistema. Objetivos: Comparar o estresse biomecânico gerado em três meios distintos de fixação da osteotomia Le Fort I frente ao movimento de avanço sagital linear maxilar de 7mm. Metodologia: Trata-se de uma pesquisa experimental laboratorial, utilizando-se da análise de elementos finitos como ferramenta analítica, a fim de constatar qual das técnicas sofrerá maior estresse biomecânico. Resultados: Constatou-se que o estresse biomecânico gerado é maior quando aplicado em 4 pontos do que quando aplicado em apenas 2 pontos. Conclusão: Os resultados obtidos fornecem informações aos cirurgiões sobre a real necessidade do uso de fixação adicional de acordo com o método de fixação planejado. No entanto, deve ser interpretado de forma cautelosa, considerando-se as limitações deste estudo. Sendo assim, uma análise incipiente, que tem como intuito o fornecimento de evidência científica de grande significância.


Introducción: La osteotomía Le Fort I permite la corrección de deformidades dentofaciales que involucran el tercio medio de la cara. Para su fijación se acordó utilizar cuatro miniplacas en los pilares cigomaticomaxilar y nasomaxilar. Entonces se propuso prescindir de la fijación del segmento posterior, planteando interrogantes relacionados con la capacidad biomecánica del sistema. Objetivos: Comparar el estrés biomecánico generado en tres medios diferentes de fijación de la osteotomía Le Fort I frente a un movimiento de avance sagital lineal maxilar de 7mm. Metodología: Se trata de una investigación experimental de laboratorio, utilizando como herramienta analítica el análisis de elementos finitos, con el fin de comprobar cuál de las técnicas sufrirá un mayor estrés biomecánico. Resultados: Se encontró que el estrés biomecánico generado es mayor cuando se aplica en 4 puntos que cuando se aplica solo en 2 puntos. Conclusión: Los resultados obtenidos brindan información a los cirujanos sobre la necesidad real de utilizar fijación adicional de acuerdo al método de fijación planificado. Sin embargo, debe interpretarse con cautela, considerando las limitaciones de este estudio. Por tanto, un análisis incipiente, que pretende aportar evidencias científicas de gran trascendencia.


Introduction: The Le Fort I osteotomy allows the correction of dentofacial deformities involving the middle third of the face. For its fixation, it was agreed to use four mini plates on the zygomaticomaxillary and nasomaxillary pillars. It was then proposed to dispense with the fixation of the posterior segment, raising questions related to the biomechanical capacity of the system. Objectives: To compare the biomechanical stress generated in three different means of fixation of the Le Fort I osteotomy against a 7mm maxillary linear sagittal advancement movement. Methodology: This is an experimental laboratory research, using finite element analysis as an analytical tool, in order to verify which of the techniques will suffer greater biomechanical stress. Results: It was found that the biomechanical stress generated is greater when applied to 4 points than when applied to only 2 points. Conclusion: The results obtained provide information to surgeons about the real need to use additional fixation according to the planned fixation method. However, it should be interpreted with caution, considering the limitations of this study. Therefore, an incipient analysis, which aims to provide scientific evidence of great significance.


Subject(s)
Osteotomy, Le Fort , Finite Element Analysis , Orthognathic Surgery , Fracture Fixation, Internal
5.
Int. j. morphol ; 41(5): 1288-1296, oct. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1521049

ABSTRACT

El propósito de este estudio fue analizar el comportamiento mecánico de la estructura dental sana de un primer premolar inferior humano sometido a fuerzas funcionales y disfuncionales en diferentes direcciones. Se buscó comprender, bajo las variables contempladas, las zonas de concentración de esfuerzos que conllevan al daño estructural de sus constituyentes y tejidos adyacentes. Se realizó el modelo 3D de la reconstrucción de un archivo TAC de un primer premolar inferior, que incluyó esmalte, dentina, ligamento periodontal y hueso alveolar considerando tres variables: dirección, magnitud y área de la fuerza aplicada. La dirección fue dirigida en tres vectores (vertical, tangencial y horizontal) bajo cuatro magnitudes, una funcional de 35 N y tres disfuncionales de 170, 310 y 445 N, aplicadas sobre un área de la cara oclusal y/o vestibular del premolar que involucró tres contactos estabilizadores (A, B y C) y dos paradores de cierre. Los resultados obtenidos explican el fenómeno de combinar tres vectores, cuatro magnitudes y un área de aplicación de la fuerza, donde los valores de esfuerzo efectivo equivalente Von Mises muestran valores máximos a partir de los 60 MPa. Los valores de tensión máximos se localizan, bajo la carga horizontal a 170 N y en el proceso masticatorio en la zona cervical, cuando la fuerza pasa del 60 %. Sobre la base de los hallazgos de este estudio, se puede concluir que la reacción de los tejidos a fuerzas funcionales y disfuncionales varía de acuerdo con la magnitud, dirección y área de aplicación de la fuerza. Los valores de tensión resultan ser más altos bajo la aplicación de fuerzas disfuncionales tanto en magnitud como en dirección, produciendo esfuerzos tensiles significativos para la estructura dental y periodontal cervical, mientras que, bajo las cargas funcionales aplicadas en cualquier dirección, no se generan esfuerzos lesivos. Esto supone el reconocimiento del poder de detrimento estructural del diente y periodonto frente al bruxismo céntrico y excéntrico.


SUMMARY: The purpose of this study was to analyze the mechanical behavior of the healthy dental structure of a human mandibular first premolar subjected to functional and dysfunctional forces in different directions. It was sought to understand, under the contemplated variables, the areas of stress concentration that lead to structural damage of its constituents and adjacent tissues. The 3D model of the reconstruction of a CT file of a lower first premolar was made, which included enamel, dentin, periodontal ligament and alveolar bone considering three variables: direction, magnitude and area of the applied force. The direction was directed in three vectors (vertical, tangential and horizontal) under four magnitudes, one functional of 35 N and three dysfunctional of 170, 310 and 445 N, applied to an area of the occlusal and/or buccal face of the premolar that involved three stabilizing contacts (A, B and C) and two closing stops. The results obtained explain the phenomenon of combining three vectors, four magnitudes and an area of force application, where the values of effective equivalent Von Mises stress show maximum values from 60 MPa. The maximum tension values are located under the horizontal load at 170 N and in the masticatory process in the cervical area, when the force exceeds 60%. Based on the findings of this study, it can be concluded that the reaction of tissues to functional and dysfunctional forces varies according to the magnitude, direction, and area of application of the force. The stress values turn out to be higher under the application of dysfunctional forces both in magnitude and in direction, producing significant tensile stresses for the dental and cervical periodontal structure, while under functional loads applied in any direction, no damaging stresses are generated. This supposes the recognition of the power of structural detriment of the tooth and periodontium against centric and eccentric bruxism.


Subject(s)
Humans , Bicuspid/physiology , Biomechanical Phenomena , Finite Element Analysis , Tooth/physiology , Bite Force , Bruxism/physiopathology , Elastic Modulus , Tooth Wear , Mastication/physiology
6.
Int. j. odontostomatol. (Print) ; 17(2): 174-185, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440356

ABSTRACT

This in silico study aimed to evaluate the biomechanical behavior of a full-arch implant-supported prosthesis on titanium and zirconia monotype implants. A 3D mandible containing 1.0 mm thick cortical and cancellous bone was modeled. Four dental implants (3.3 x 10 mm) were inserted into the jaw model in each model. The implants consisted of Titanium (Ti-S group) and Zirconia Monotype/one-piece (Zr-S group). Fixed full-arch implant-supported prostheses were cemented onto the implant. The models were exported to the analysis software and divided into meshes composed of nodes and tetrahedral elements. All materials were considered isotropic, elastic, and homogeneous. Therefore, all contacts were considered bonded, the mandible model was fixed in all directions, applying a static structural axial load of 300 N on the bottom of the fossa of the left mola r teeth. Microstrain and von-Mises stress (MPa) were adopted as failure criteria. Comparable stress and strain values were shown in the peri-implant bone for both groups. However, the Ti-S group presented a lower stress value (1,155.8 MPa) than the Zr-S group (1,334.2 MPa). Regarding bone tissues, the Ti-S group presented 612 µε and the Zr-S group presented 254 µε. The highest strain peak was observed in bone tissues around the implant closer to the load for both groups. Evaluating monotype zirconia and titanium implants, it is suggested that the greater the rigidity of the implant, the greater the concentration of internal stre sses and the less dissipation to the surrounding tissues. Therefore, monotype ceramic implants composed of yttrium-stabilized tetragonal polycrystalline zirconia may be a viable alternative to titanium implants for full-arch prostheses.


El objetivo de este estudio in silico fue evaluar el comportamiento biomecánico de una prótesis implanto soportada de arcada completa sobre implantes monotipo de titanio y zirconia. Se modeló una mandíbula en 3D que contenía tejido óseo cortical y esponjoso de 1,0 mm de espesor. En cada modelo, se insertaron cuatro implantes dentales (3,3 x 10 mm) en el modelo de mandíbula. Los implantes consistieron en Monotipo de Titanio y Zirconia. Sobre el implante se cementaron prótesis implanto soportadas de arcada completa fija. Los modelos se exportaron al software de análisis y se dividieron en mallas compuestas por nodos y elementos tetraédricos. Todos los materiales se consideraron isotrópicos, elásticos y homogéneos. Por lo tanto, todos los contactos se consideraron cementados, el modelo mandibular se fijó en todas las direcciones, aplicando una carga vertical estructural estática de 300 N en el fondo de la fosa de los dientes molares izquierdos. Se seleccionaron la microesfuerzo y la tensión de Von-Mises (MPa) como criterios de falla. Se mostraron valores de tensión y deformación comparables en el hueso periimplantario para ambos grupos. Sin embargo, el grupo Ti-S presentó un valor de estrés menor (1.155,8 MPa) que el grupo Zr-S (1.334,2 MPa). En cuanto a los tejidos óseos, el grupo Ti-S presentó 612 µε y el grupo Zr-S presentó 254 µε. La mayor concentración de deformación en el tejido óseo se observó en los tejidos alrededor del implante más cerca de la carga para ambos grupos. Al evaluar los implantes monotípicos de zirconia y titanio, se sugiere que cuanto mayor sea la rigidez del implante, mayor será la concentración de tensiones internas y menor la disipación a los tejidos circundantes. Por lo tanto, los implantes cerámicos monotipo compuestos de zirconia policristalina tetragonal estabilizada con itrio pueden ser una alternativa viable a los implantes de titanio para prótesis de arcada completa.


Subject(s)
Dental Implants , Dental Materials , Stress, Mechanical , Biomechanical Phenomena , Finite Element Analysis , Mandible/diagnostic imaging
7.
São José dos Campos; s.n; 2023. 74 p. ilus, tab.
Thesis in English | LILACS, BBO | ID: biblio-1452276

ABSTRACT

Este estudo teve como objetivo avaliar o efeito da estrutura dentária remanescente e dois materiais diferentes de restauração CAD/CAM no desempenho à fadiga e no modo de falha de pré-molares tratados endodonticamente restaurados por endocrowns. Um total de 90 pré-molares superiores foram tratados endodonticamente e divididos aleatoriamente de acordo com o número de paredes axiais remanescentes, e os materiais restauradores foram divididos em 6 grupos (n = 15); quatro paredes restantes restauradas com zircônia ultratranslúcida 5Y-PSZ (grupo Fo-Z) e dissilicato de lítio (grupo Fo-L), três paredes restantes restauradas com 5Y-PSZ (grupo Th-Z) e dissilicato de lítio (grupo Th-L) e duas paredes restantes restauradas com 5YPSZ (grupo Tw-Z) e dissilicato de lítio (Tw-L). As restaurações foram cimentadas adesivamente e os espécimes foram submetidos a cargas de fadiga gradual em seu longo eixo (carga inicial: 200 N, frequência: 20 Hz). Uma carga incremental de 100 N por 10.000 ciclos foi aplicada com um pistão metálico de Ø 6 mm até a falha. A carga de falha por fadiga (FFL) e o número de ciclos de falha (CFF) no momento da falha foram registrados e analisados estatisticamente por ANOVA 2 fatores e teste de Kaplan-Meier (α = 0,05). Os espécimes fraturados foram examinados em estereomicroscópio em 8× e 25× e os modos de falha foram determinados como reparáveis ou catastróficos. FFL e CFF foram significativamente influenciados pelo material restaurador (p < 0,05). As restaurações de 5Y-PSZ apresentaram FFL (Fo-Z = 1487 N, Tw-Z = 1427 N, Tw-Z = 1533 N) e probabilidade de sobrevivência significativamente maiores quando comparadas com dissilicato de lítio (Fo-L = 1060 N, Th-L = 940 N, TwL = 1000 N). O número de paredes remanescentes não afetou o comportamento de fadiga ou modo de falha dos corpos de prova. Das restaurações de dissilicato de lítio, 51% tiveram falhas reparáveis, enquanto 95% das restaurações de zircônia ultratranslúcida 5Y-ZP tiveram falhas catastróficas. Endocrowns de zircônia apresentaram melhor desempenho em fadiga do que endocrowns de dissilicato de lítio, independentemente do número de paredes remanescentes do eixo. Endocrowns de pré-molares de dissilicato de lítio e 5Y-PSZ apresentaram maior FFL do que as cargas mastigatórias normais (AU)


This study aimed to evaluate the effect of the remaining tooth structure and two different CAD/CAM restoration materials on the fatigue performance and failure mode of endodontically treated premolars restored with endocrowns. A total of 90 maxillary premolars were endodontically treated and divided randomly according to the number of remaining axial walls, and the restorative materials were divided into 6 groups (n = 15); four remaining walls restored with ultratranslucent zirconia 5Y-PSZ (group Fo-Z) and lithium disilicate (group Fo-L), three remaining walls restored with 5Y-PSZ (group Th-Z) and lithium disilicate (Group Th-L), and two remaining walls restored with 5Y-PSZ (group Tw-Z) and lithium disilicate (Tw-L). The restorations were cemented adhesively and the specimens were subjected to stepwise fatigue loading along the long axis (initial load: 200 N, frequency: 20 Hz). An incremental step load of 100 N per 10,000 cycles was applied with a Ø6-mm metallic piston until failure. The fatigue failure load (FFL) and number of failure cycles (CFF) at the time of failure were recorded and statistically analyzed with two-way ANOVA and the Kaplan-Meier test (α = 0.05). Fractured specimens were examined under a stereomicroscope at 8× and 25× and failure modes determined as reparable or catastrophic. FFL and CFF were significantly influenced by restorative material (p < 0.05). 5Y-PSZ endocrowns showed significantly higher FFL (Fo-Z = 1487 N, Th-Z = 1427 N, Tw-Z = 1533 N) and survival probability when compared with lithium disilicate (Fo-L = 1060 N, Th-L = 940 N, Tw-L = 1000 N). The number of remaining walls did not affect the fatigue behavior or failure mode of the specimens. Of the lithium disilicate restorations, 51% had repairable failures, while 95% of ultratranslucent zirconia 5Y-ZP restorations had catastrophic failures. Zirconia endocrowns showed better fatigue performance than lithium disilicate endocrowns, regardless of the number of remaining axis walls. Lithium disilicate and 5Y-PSZ premolar endocrowns showed higher FFL than the normal masticatory loads (AU)


Subject(s)
Computer-Aided Design , Dental Restoration Failure , Finite Element Analysis , Fatigue
8.
Rev. odontol. UNESP (Online) ; 52: e20230027, 2023. tab, ilus
Article in English | LILACS, BBO | ID: biblio-1530299

ABSTRACT

Introdução: O conhecimento da biomecânica de implantes de diâmetro reduzido indica dimensões seguras para uso clínico. Objetivo: O objetivo do presente estudo foi comparar biomecanicamente implantes de diâmetro regular e reduzido para suporte de próteses implantossuportadas unitárias na região anterior da maxila por meio de análise de elementos finitos 3D (3D-FEA). Material e método: Quatro modelos 3D-FEA foram desenvolvidos a partir de recomposição de tomografia computadorizada e dados da literatura: um bloco ósseo na região incisiva lateral superior direita com implante e coroa. M1: 3,75 x 13 mm, M2: 3,75 x 8,5 mm, M3: 2,9 x 13 mm e M4: 2,9 x 8,5 mm. Foi aplicada carga de 178 N nos ângulos 0, 30 e 60 graus em relação ao longo eixo do implante. Foram avaliados mapas de tensão de Von Mises, tensão principal máxima e microdeformação. Resultado: M3 e M4 apresentaram maiores valores de tensão e microdeformação que M1 e M2, principalmente quando foram aplicadas forças inclinadas. Porém, M3 apresentou comportamento biomecânico melhor do que M4. Conclusão: Pode-se concluir que reduzir o diâmetro dos implantes pode prejudicar a biomecânica durante a aplicação de forças, mas a distribuição e intensidade das tensões, bem como os valores de microdeformação podem ser melhorados se o comprimento do implante for aumentado


Introduction: Narrow diameter implants biomechanics knowledge indicates safe dimensions for clinical use. Objective: Purpose of the present study was biomechanically to compare regular and narrow diameter implants to support single implant-supported prosthesis in the anterior region of the maxilla by 3D finite element analysis (3D-FEA). Material and method: Four 3D-FEA models were developed form CT scan recompositing and literature data: a bone block in the right upper lateral incisive region with implant and crown. M1: 3.75 x 13 mm, M2: 3.75 x 8.5 mm, M3: 2.9 x 13 mm and M4: 2.9 x 8.5 mm. It was applied load was of 178 N at 0, 30 and 60 degrees in relation to implant long axis. Von Mises stress, maximum principal stress and microdeformation maps were evaluated. Result: M3 and M4 did show higher tension and higher microdeformation values than M1 and M2, especially when inclined forces were applied. However, M3 presented enhanced biomechanical behavior than M4. Conclusion: It can be concluded that reduce the diameter of the implants can disadvantage to the biomechanics during the application of forces, but the distribution and intensity of the stresses, as well as the micro deformation values can be improved if the length of the implant is increased


Subject(s)
Prostheses and Implants , Stress, Mechanical , Biomechanical Phenomena , Bone and Bones , Dental Implants , Finite Element Analysis , Tomography, X-Ray Computed , Maxilla
9.
Journal of Peking University(Health Sciences) ; (6): 548-552, 2023.
Article in Chinese | WPRIM | ID: wpr-986888

ABSTRACT

OBJECTIVE@#To analyze the cement flow in the abutment margin-crown platform switching structure by using the three-dimensional finite element analysis, in order to prove that whether the abutment margin-crown platform switching structure can reduce the inflow depth of cement in the implantation adhesive retention.@*METHODS@#By using ANSYS 19.0 software, two models were created, including the one with regular margin and crown (Model one, the traditional group), and the other one with abutment margin-crown platform switching structure (Model two, the platform switching group). Both abutments of the two models were wrapped by gingiva, and the depth of the abutment margins was 1.5 mm submucosal. Two-way fluid structure coupling calculations were produced in two models by using ANSYS 19.0 software. In the two models, the same amount of cement were put between the inner side of the crowns and the abutments. The process of cementing the crown to the abutment was simulated when the crown was 0.6 mm above the abutment. The crown was falling at a constant speed in the whole process spending 0.1 s. Then we observed the cement flow outside the crowns at the time of 0.025 s, 0.05 s, 0.075 s, 0.1 s, and measured the depth of cement over the margins at the time of 0.1 s.@*RESULTS@#At the time of 0 s, 0.025 s, 0.05 s, the cements in the two models were all above the abutment margins. At the time of 0.075 s, in Model one, the gingiva was squeezed by the cement and became deformed, and then a gap was formed between the gingiva and the abutment into which the cement started to flow. In Model two, because of the narrow neck of the crown, the cement flowed out from the gingival as it was pressed by the upward counterforce from the gingival and the abutment margin. At the time of 0.1 s, in Model one, the cement continued to flow deep inside with the gravity force and pressure, and the depth of the cement over the margin was 1 mm. In Model two, the cement continued to flow out from the gingival at the time of 0.075 s, and the depth of the cement over the margin was 0 mm.@*CONCLUSION@#When the abutment was wrapped by the gingiva, the inflow depth of cement in the implantation adhesive retention can be reduced in the abutment margin-crown platform switching structure.


Subject(s)
Finite Element Analysis , Cementation/methods , Gingiva , Crowns , Dental Abutments , Dental Cements , Dental Stress Analysis
10.
China Journal of Orthopaedics and Traumatology ; (12): 262-267, 2023.
Article in Chinese | WPRIM | ID: wpr-970859

ABSTRACT

OBJECTIVE@#With the help of finite element analysis, to explore the effect of proximal humeral bone cement enhanced screw plate fixation on the stability of internal fixation of osteoporotic proximal humeral fracture.@*METHODS@#The digital model of unstable proximal humeral fracture with metaphyseal bone defect was made, and the finite element models of proximal humeral fracture bone cement enhanced screw plate fixation and common screw plate fixation were established respectively. The stress of cancellous bone around the screw, the overall stiffness, the maximum stress of the plate and the maximum stress of the screw were analyzed.@*RESULTS@#The maximum stresses of cancellous bone around 6 screws at the head of proximal humeral with bone cement enhanced screw plate fixation were 1.07 MPa for No.1 nail, 0.43 MPa for No.2 nail, 1.16 MPa for No.3 nail, 0.34 MPa for No.4 nail, 1.99 MPa for No.5 nail and 1.57 MPa for No.6 nail. These with common screw plate fixation were:2.68 MPa for No.1 nail, 0.67 MPa for No.2 nail, 4.37 MPa for No.3 nail, 0.75 MPa for No.4 nail, 3.30 MPa for No.5 nail and 2.47 MPa for No.6 nail. Overall stiffness of the two models is 448 N/mm for bone cement structure and 434 N/mm for common structure. The maximum stress of plate appears in the joint hole:701MPa for bone cement structure and 42 0MPa for common structure. The maximum stress of screws appeared at the tail end of No.4 nail:284 MPa for bone cement structure and 240.8 MPa for common structure.@*CONCLUSION@#Through finite element analysis, it is proved that the proximal humerus bone cement enhanced screw plate fixation of osteoporotic proximal humeral fracture can effectively reduce the stress of cancellous bone around the screw and enhance the initial stability after fracture operation, thus preventing from penetrating out and humeral head collapsing.


Subject(s)
Humans , Finite Element Analysis , Bone Cements , Polymethyl Methacrylate , Biomechanical Phenomena , Shoulder Fractures/surgery , Fracture Fixation, Internal , Humeral Head , Bone Screws , Bone Plates
11.
China Journal of Orthopaedics and Traumatology ; (12): 255-261, 2023.
Article in Chinese | WPRIM | ID: wpr-970858

ABSTRACT

OBJECTIVE@#To investigate the biomechanical characteristics of different internal fixations for Pauwels type Ⅲ femoral neck fracture with defect, and provide reference for the treatment of femoral neck fracture.@*METHODS@#Three-dimensional (3D) finite element models of femoral neck fractures were established based on CT images, including fracture and fracture with defects. Four internal fixations were simulated, namely, inverted cannulated screw(ICS), ICS combined with medial buttress plate, the femoral neck system (FNS) and FNS combined with medial buttress plate. The von Mises stress, model stiffness and fracture displacements of fracture models under 2 100 N axial loads were measured and compared.@*RESULTS@#When femoral neck fracture was fixed by ICS and FNS, the peak stress was mainly concentrated on the surface of the screw near the fracture line, and the peak stress of FNS is higher than that of ICS;When the medial buttress plate was combined, the peak stress was increased and transferred to medial buttress plate, with more obvious of ICS fixation. For the same fracture model, the stiffness of FNS was higher than that of ICS. Compared with femoral neck fracture with defects, fracture model showed higher stiffness in the same internal fixation. The use of medial buttress plate increased model stiffness, but ICS increased more than FNS. The fracture displacement of ICS model exceeded that of FNS.@*CONCLUSION@#For Pauwels type Ⅲ femoral neck fracture with defects, FNS had better biomechanical properties than ICS. ICS combined with medial buttress plate can better enhance fixation stability and non-locking plate is recommended. FNS had the capability of shear resistance and needn't combine with medial buttress plate.


Subject(s)
Humans , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/methods , Bone Screws , Bone Plates , Biomechanical Phenomena , Finite Element Analysis
12.
China Journal of Orthopaedics and Traumatology ; (12): 251-255, 2023.
Article in Chinese | WPRIM | ID: wpr-970857

ABSTRACT

OBJECTIVE@#To investigate the biomechanical characteristics of retinaculum in the treatment of femoral neck fractures.@*METHODS@#The CT data of a 75-year-old female volunteer was processed by software to construct an intact femur model and femoral neck fracture model fixed with three cannulated screws, which were divided into models with retinaculum or not. The Von-Mises stress distribution and displacement were compared to analyze the stability differences between the different models to study the mechanical characteristics of the retinaculum in the treatment of femoral neck fractures.@*RESULTS@#In the intact femur, the most obvious displacement appeared in the weight-bearing area of the femoral head, with retinaculum 0.381 37 mm, and without retinaculum 0.381 68 mm. The most concentrated part of the Von-Mises stress distribution was located in the medial and inferior part of the femoral neck, with retinaculum 11.80 MPa, without retinaculum 11.91 MPa. In the femoral neck fracture fixed with three cannulated screws model, the most obvious position of displacement also appeared in the weight-bearing area of the femoral head, with retinaculum 0.457 27 mm, without retinaculum 0.458 63 mm. The most concentrated part of the Von-Mises located at the medical and inferior part of the femoral neck, with retinaculum 59.22 MPa, without retinaculum 59.14 MPa. For the cannulated screws, the Von-Mises force peaks all appeared in the posterior and superior screw, with retinaculum 107.48 MPa, without retinaculum 110.84 MPa. Among the three screws, the Von-Mises stress of the anterior-superior screw was the smallest, which was 67.88 MPa vs 68.76 MPa in the retinaculum and non-retinaculum groups, respectively.@*CONCLUSION@#The complete retinaculum has little effect on the stability of intact femur and femoral neck fractures with anatomical reduction after internal fixation, and cannot effectively improve the stability of the fracture end after the fracture.


Subject(s)
Female , Humans , Aged , Finite Element Analysis , Femoral Neck Fractures/surgery , Fracture Fixation, Internal , Bone Screws , Femur Neck , Biomechanical Phenomena
13.
Chinese Journal of Traumatology ; (6): 147-154, 2023.
Article in English | WPRIM | ID: wpr-981917

ABSTRACT

PURPOSE@#Child head injury under impact scenarios (e.g. falls, vehicle crashes, etc.) is an important topic in the field of injury biomechanics. The head of piglet was commonly used as the surrogate to investigate the biomechanical response and mechanisms of pediatric head injuries because of the similar cellular structures and material properties. However, up to date, piglet head models with accurate geometry and material properties, which have been validated by impact experiments, are seldom. We aim to develop such a model for future research.@*METHODS@#In this study, first, the detailed anatomical structures of the piglet head, including the skull, suture, brain, pia mater, dura mater, cerebrospinal fluid, scalp and soft tissue, were constructed based on CT scans. Then, a structured butterfly method was adopted to mesh the complex geometries of the piglet head to generate high-quality elements and each component was assigned corresponding constitutive material models. Finally, the guided drop tower tests were conducted and the force-time histories were ectracted to validate the piglet head finite element model.@*RESULTS@#Simulations were conducted on the developed finite element model under impact conditions and the simulation results were compared with the experimental data from the guided drop tower tests and the published literature. The average peak force and duration of the guide drop tower test were similar to that of the simulation, with an error below 10%. The inaccuracy was below 20%. The average peak force and duration reported in the literature were comparable to those of the simulation, with the exception of the duration for an impact energy of 11 J. The results showed that the model was capable to capture the response of the pig head.@*CONCLUSION@#This study can provide an effective tool for investigating child head injury mechanisms and protection strategies under impact loading conditions.


Subject(s)
Animals , Swine , Finite Element Analysis , Skull/injuries , Craniocerebral Trauma/diagnostic imaging , Brain , Biomechanical Phenomena , Scalp
14.
China Journal of Orthopaedics and Traumatology ; (12): 543-549, 2023.
Article in Chinese | WPRIM | ID: wpr-981729

ABSTRACT

OBJECTIVE@#This study aims to examine the biomechanical effects of different reconstruction methods, including single-bundle, double-bundle anatomical reconstruction, and double-bundle truly anatomical reconstruction of the coracoclavicular ligament on the acromioclavicular joint using finite element analysis, to provide a theoretical basis for the clinical application of truly anatomical coracoclavicular ligament reconstruction.@*METHODS@#One volunteer, aged 27 years old, with a height of 178 cm and a weight of 75 kg, was selected for CT scanning of the shoulder joint. Three-dimensional finite element models of single-bundle reconstruction, double-bundle anatomical reconstruction, and double-bundle truly anatomical reconstruction of coracoclavicular ligament were established by using Mimics17.0, Geomagic studio 2012, UG NX 10.0, HyperMesh 14.0 and ABAQUS 6.14 software. The maximum displacement of the middle point of the distal clavicle in the main loading direction and the maximum equivalent stress of the reconstruction device under different loading conditions were recorded and compared.@*RESULTS@#The maximum forward displacement and the maximum backward displacement of the middle point of the distal clavicle in the double-bundle truly anatomic reconstruction were the lowest, which were 7.76 mm and 7.27 mm respectively. When an upward load was applied, the maximum displacement of the distal clavicle midpoint in the double-beam anatomic reconstruction was the lowest, which was 5.12 mm. Applying three different loads forward, backward, and upward, the maximum equivalent stress of the reconstruction devices in the double-beam reconstruction was lower than that in the single-beam reconstruction. The maximum equivalent stress of the trapezoid ligament reconstruction device in the double-bundle truly anatomical reconstruction was lower than that in the double-bundle anatomical reconstruction, which was 73.29 MPa, but the maximum equivalent stress of the conoid ligament reconstruction device was higher than that of the double-bundle anatomical reconstruction.@*CONCLUSION@#The truly anatomical reconstruction of coracoclavicular ligament can improve the horizontal stability of acromioclavicular joint and reduce the stress of the trapezoid ligament reconstruction device. It can be a good method for the treatment of acromioclavicular joint dislocation.


Subject(s)
Humans , Adult , Acromioclavicular Joint/surgery , Finite Element Analysis , Ligaments, Articular/surgery , Shoulder Joint/surgery , Plastic Surgery Procedures , Joint Dislocations/surgery
15.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 821-826, 2023.
Article in Chinese | WPRIM | ID: wpr-981674

ABSTRACT

OBJECTIVE@#To design customized titanium alloy lunate prosthesis, construct three-dimensional finite element model of wrist joint before and after replacement by finite element analysis, and observe the biomechanical changes of wrist joint after replacement, providing biomechanical basis for clinical application of prosthesis.@*METHODS@#One fresh frozen human forearm was collected, and the maximum range of motions in flexion, extension, ulnar deviation, and radialis deviation tested by cortex motion capture system were 48.42°, 38.04°, 35.68°, and 26.41°, respectively. The wrist joint data was obtained by CT scan and imported into Mimics21.0 software and Magics21.0 software to construct a wrist joint three-dimensional model and design customized titanium alloy lunate prosthesis. Then Geomagic Studio 2017 software and Solidworks 2017 software were used to construct the three-dimensional finite element models of a normal wrist joint (normal model) and a wrist joint with lunate prosthesis after replacement (replacement model). The stress distribution and deformation of the wrist joint before and after replacement were analyzed for flexion at and 15°, 30°, 48.42°, extension at 15°, 30°, and 38.04°, ulnar deviation at 10°, 20°, and 35.68°, and radial deviation at 5°, 15°, and 26.41° by the ANSYS 17.0 finite element analysis software. And the stress distribution of lunate bone and lunate prosthesis were also observed.@*RESULTS@#The three-dimensional finite element models of wrist joint before and after replacement were successfully constructed. At different range of motion of flexion, extension, ulnar deviation, and radial deviation, there were some differences in the number of nodes and units in the grid models. In the four directions of flexion, extension, ulnar deviation, and radial deviation, the maximum deformation of wrist joint in normal model and replacement model occurred in the radial side, and the values increased gradually with the increase of the range of motion. The maximum stress of the wrist joint increased gradually with the increase of the range of motion, and at maximum range of motion, the stress was concentrated on the proximal radius, showing an overall trend of moving from the radial wrist to the proximal radius. The maximum stress of normal lunate bone increased gradually with the increase of range of motion in different directions, and the stress position also changed. The maximum stress of lunate prosthesis was concentrated on the ulnar side of the prosthesis, which increased gradually with the increase of the range of motion in flexion, and decreased gradually with the increase of the range of motion in extension, ulnar deviation, and radialis deviation. The stress on prosthesis increased significantly when compared with that on normal lunate bone.@*CONCLUSION@#The customized titanium alloy lunate prosthesis does not change the wrist joint load transfer mode, which provided data support for the clinical application of the prosthesis.


Subject(s)
Humans , Lunate Bone/surgery , Finite Element Analysis , Titanium , Wrist Joint/surgery , Artificial Limbs , Range of Motion, Articular , Biomechanical Phenomena
16.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 796-801, 2023.
Article in Chinese | WPRIM | ID: wpr-981670

ABSTRACT

OBJECTIVE@#To establish the finite element model of varus-type ankle arthritis and to implement the finite element mechanical analysis of different correction models for tibial anterior surface angle (TAS) in supramalleolar osteotomy.@*METHODS@#A female patient with left varus-type ankle arthritis (Takakura stage Ⅱ, TAS 78°) was taken as the study object. Based on the CT data, the three-dimensional model of varus-type ankle arthritis (TAS 78°) and different TAS correction models [normal (TAS 89°), 5° valgus (TAS 94°), and 10° valgus (TAS 99°)] were created by software Mimics 21.0, Geomagic Wrap 2021, Solidworks 2017, and Workbench 17.0. The 290 N vertical downward force was applied to the upper surface of the tibia and 60 N vertical downward force to the upper surface of the fibula. Von Mises stress distribution and stress peak were calculated.@*RESULTS@#The finite element model of normal TAS was basically consistent with biomechanics of the foot. According to biomechanical analysis, the maximum stress of the varus model appeared in the medial tibiotalar joint surface and the medial part of the top tibiotalar joint surface. The stress distribution of talofibular joint surface and the lateral part of the top tibiotalar joint surface were uniform. In the normal model, the stress distributions of the talofibular joint surface and the tibiotalar joint surface were uniform, and no obvious stress concentration was observed. The maximum stress in the 5° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress distribution of medial tibiotalar joint surface was uniform. The maximum stress of the 10° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress on the medial tibiotalar joint surface increased.@*CONCLUSION@#With the increase of valgus, the stress of ankle joint gradually shift outwards, and the stress concentration tends to appear. There was no obvious obstruction of fibula with 10° TAS correction. However, when TAS correction exceeds 10° and continues to increase, the obstruction effect of fibula becomes increasingly significant.


Subject(s)
Humans , Female , Tibia/surgery , Finite Element Analysis , Ankle , Arthritis , Fibula/surgery , Ankle Joint/surgery
17.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 688-693, 2023.
Article in Chinese | WPRIM | ID: wpr-981653

ABSTRACT

OBJECTIVE@#The biomechanical characteristics of three internal fixation modes for femoral subtrochanteric spiral fracture in osteoporotic patients were compared and analyzed by finite element technology, so as to provide the basis for the optimization of fixation methods for femoral subtrochanteric spiral fracture.@*METHODS@#Ten female patients with osteoporosis and femoral subtrochanteric spiral fractures caused by trauma, aged 65-75 years old, with a height of 160-170 cm and a body weight mass of 60-70 kg, were selected as the study subjects. The femur was scanned by spiral CT and a three-dimensional model of the femur was established by digital technology. The computer aided design models of proximal intramedullary nail (PFN), proximal femoral locking plate (PFLP), and the combination of the two (PFLP+PFN) were constructed under the condition of subtrochanteric fracture. Then the same load of 500 N was applied to the femoral head, and the stress distribution of the internal fixators, the stress distribution of the femur, and the displacement of femur after fracture fixation were compared and analyzed under the three finite element internal fixation modes, so as to evaluate the fixation effect.@*RESULTS@#In the PFLP fixation mode, the stress of the plate was mainly concentrated in the main screw channel, the stresses of the different part of the plate were not equal, and gradually decreased from the head to the tail. In the PFN fixation mode, the stress was concentrated in the upper part of the lateral middle segment. In the PFLP+PFN fixation mode, the maximum stress appeared between the first and the second screws in the lower segment, and the maximum stress appeared in the lateral part of the middle segment of the PFN. The maximum stress of PFLP+PFN fixation mode was significantly higher than that of PFLP fixation mode, but significantly lower than that of PFN fixation mode ( P<0.05). In PFLP and PFN fixation modes, the maximum stress of femur appeared in the medial and lateral cortical bone of the middle femur and the lower side of the lowest screw. In PFLP+PFN fixation mode, the stress of femur concentrated in the medial and lateral of the middle femur. There was no significant difference in the maximum stress of femur among the three finite element fixation modes ( P>0.05). The maximum displacement occurred at the femoral head after three finite element fixation modes were used to fix subtrochanteric femoral fractures. The maximum displacement of femur in PFLP fixation mode was the largest, followed by PFN, and PFLP+PFN was the minimum, with significant differences ( P<0.05).@*CONCLUSION@#Under static loading conditions, the PFLP+PFN fixation mode produces the smallest maximum displacement when compared with the single PFN and PFLP fixation modes, but its maximum plate stress is greater than the single PFN and PFLP fixation mode, suggesting that the combination mode has higher stability, but the plate load is greater, and the possibility of fixation failure is higher.


Subject(s)
Humans , Female , Aged , Finite Element Analysis , Biomechanical Phenomena , Fracture Fixation, Internal/methods , Hip Fractures/surgery , Bone Plates , Femur Head , Femoral Fractures/surgery
18.
Journal of Biomedical Engineering ; (6): 303-312, 2023.
Article in Chinese | WPRIM | ID: wpr-981543

ABSTRACT

To investigate the effects of postoperative fusion implantation on the mesoscopic biomechanical properties of vertebrae and bone tissue osteogenesis in idiopathic scoliosis, a macroscopic finite element model of the postoperative fusion device was developed, and a mesoscopic model of the bone unit was developed using the Saint Venant sub-model approach. To simulate human physiological conditions, the differences in biomechanical properties between macroscopic cortical bone and mesoscopic bone units under the same boundary conditions were studied, and the effects of fusion implantation on bone tissue growth at the mesoscopic scale were analyzed. The results showed that the stresses in the mesoscopic structure of the lumbar spine increased compared to the macroscopic structure, and the mesoscopic stress in this case is 2.606 to 5.958 times of the macroscopic stress; the stresses in the upper bone unit of the fusion device were greater than those in the lower part; the average stresses in the upper vertebral body end surfaces were ranked in the order of right, left, posterior and anterior; the stresses in the lower vertebral body were ranked in the order of left, posterior, right and anterior; and rotation was the condition with the greatest stress value in the bone unit. It is hypothesized that bone tissue osteogenesis is better on the upper face of the fusion than on the lower face, and that bone tissue growth rate on the upper face is in the order of right, left, posterior, and anterior; while on the lower face, it is in the order of left, posterior, right, and anterior; and that patients' constant rotational movements after surgery is conducive to bone growth. The results of the study may provide a theoretical basis for the design of surgical protocols and optimization of fusion devices for idiopathic scoliosis.


Subject(s)
Humans , Scoliosis/surgery , Spinal Fusion/methods , Lumbar Vertebrae/surgery , Osteogenesis , Biomechanical Phenomena/physiology , Finite Element Analysis
19.
Journal of Biomedical Engineering ; (6): 295-302, 2023.
Article in Chinese | WPRIM | ID: wpr-981542

ABSTRACT

In the orthodontics process, intervention and sliding of an orthodontic bracket during the orthodontic process can arise large response of the labio-cheek soft tissue. Soft tissue damage and ulcers frequently happen at the early stage of orthodontic treatment. In the field of orthodontic medicine, qualitative analysis is always carried out through statistics of clinical cases, while quantitative explanation of bio-mechanical mechanism is lacking. For this purpose, finite element analysis of a three-dimensional labio-cheek-bracket-tooth model is conducted to quantify the bracket-induced mechanical response of the labio-cheek soft tissue, which involves complex coupling of contact nonlinearity, material nonlinearity and geometric nonlinearity. Firstly, based on the biological composition characteristics of labio-cheek, a second-order Ogden model is optimally selected to describe the adipose-like material of the labio-cheek soft tissue. Secondly, according to the characteristics of oral activity, a two-stage simulation model of bracket intervention and orthogonal sliding is established, and the key contact parameters are optimally set. Finally, the two-level analysis method of overall model and submodel is used to achieve efficient solution of high-precision strains in submodels based on the displacement boundary obtained from the overall model calculation. Calculation results with four typical tooth morphologies during orthodontic treatment show that: ① the maximum strain of soft tissue is distributed along the sharp edges of the bracket, consistent with the clinically observed profile of soft tissue deformation; ② the maximum strain of soft tissue is reduced as the teeth align, consistent with the clinical manifestation of common damage and ulcers at the beginning of orthodontic treatment and reduced patient discomfort at the end of treatment. The method in this paper can provide reference for relevant quantitative analysis studies in the field of orthodontic medical treatment at home and abroad, and further benefit to the product development analysis of new orthodontic devices.


Subject(s)
Humans , Periodontal Ligament/physiology , Orthodontic Wires , Cheek , Ulcer , Tooth , Finite Element Analysis
20.
Braz. j. oral sci ; 22: e230356, Jan.-Dec. 2023. ilus
Article in English | LILACS, BBO | ID: biblio-1435223

ABSTRACT

Aim: Evaluate the influence of the cervical margin relocation (CMR) on stress distribution in the lower first molar restored with direct nano-ceramic composite (zenit). Methods: A 3D model of the lower first molar was modeled and used. Standardized mesio-occluso-distal (MOD) preparation consisted in two models used in this study with mesial subgingival margin in model II. (CMR) was applied in model II using flowable composite or resin glass ionomer (Riva). Both models were restored with nanoceramic composite and then subjected to six runs (2 for the model I and 4 for model II) with load (100N) as two load cases, one at (11º) and other at (45º) from the vertical axis. The stress distributions (FEA) in the final restoration and (CMR) material were analyzed using 3D models. Results: The two models recorded an equivalent Von Mises stress and Total deformation in the final restoration, regardless of the difference in the oblique angle incidence from (11º to 45º) or the type of the material used for (CMR) there was no significant difference in the (FEA) between the model with CMR (model II) and the model without CMR (model I). Conclusions: (CMR) technique seems to be biomechanically beneficial with high eccentric applied stress, (CMR) with resin glass ionomer or flowable composite resin in combination with nanoceramic composite improved the biomechanical behavior of (MOD) cavities extended below cement enamel junction (CMR) with high modulus elasticity material like (Riva) exhibits a more uniform stress distribution


Subject(s)
Composite Resins , Finite Element Analysis , Glass Ionomer Cements
SELECTION OF CITATIONS
SEARCH DETAIL